The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants, and animals.

نویسندگان

  • N de Vetten
  • F Quattrocchio
  • J Mol
  • R Koes
چکیده

In petunia flowers, the loci an1, an2, and an11 control the pigmentation of the flower by stimulating the transcription of anthocyanin biosynthetic genes. The an1 and an2 locus were recently cloned and encode a basic helix-loop-helix (bHLH) and MYB-domain transcriptional activator, respectively. Here, we report the isolation of the an11 locus by transposon tagging. RNA gel blot experiments show that an11 is expressed independently from an1 and an2 throughout plant development, as well as in tissues that do not express the anthocyanin pathway. It encodes a novel WD-repeat protein that is highly conserved even in species that do not produce anthocyanins such as yeast, nematodes, and mammals. The observation that the human an11 homolog partially complements the an11 petunia mutant in transient assays shows that sequence similarity reflects functional conservation. Overexpression of an2 in an11- petals restored the activity of a structural anthocyanin gene in transient assays, indicating that AN11 acts upstream of AN2. Cell fractionation experiments show that the bulk of the AN11 protein is localized in the cytoplasm. Taken together, this indicates that AN11 is a cytoplasmic component of a conserved signal transduction cascade that modulates AN2 function in petunia, thereby linking cellular signals with transcriptional activation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots.

Plants require sophisticated regulatory mechanisms to ensure the degree of anthocyanin pigmentation is appropriate to myriad developmental and environmental signals. Central to this process are the activity of MYB-bHLH-WD repeat (MBW) complexes that regulate the transcription of anthocyanin genes. In this study, the gene regulatory network that regulates anthocyanin synthesis in petunia (Petuni...

متن کامل

Mutations in the pale aleurone color1 Regulatory Gene of the Zeamays Anthocyanin Pathway Have Distinct Phenotypes Relative to the Functionally Similar TRANSPARENT TESTA GLABRA1Gene in Arabidopsis thalianaW

The pale aleurone color1 (pac1) locus, required for anthocyanin pigment in the aleurone and scutellum of the Zea mays (maize) seed, was cloned using Mutator transposon tagging. pac1 encodes a WD40 repeat protein closely related to anthocyanin regulatory proteins ANTHOCYANIN11 (AN11) (Petunia hybrida [petunia]) and TRANSPARENT TESTA GLABRA1 (TTG1) (Arabidopsis thaliana). Introduction of a 35S-Pa...

متن کامل

The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein.

The TRANSPARENT TESTA GLABRA1 (TTG1) locus regulates several developmental and biochemical pathways in Arabidopsis, including the formation of hairs on leaves, stems, and roots, and the production of seed mucilage and anthocyanin pigments. The TTG1 locus has been isolated by positional cloning, and its identity was confirmed by complementation of a ttg1 mutant. The locus encodes a protein of 34...

متن کامل

anthocyanin1 of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes.

The petunia loci anthocyanin1 (an1), an2, an4, and an11 are required for the transcription of anthocyanin biosynthetic genes in floral organs. The an2 and an11 loci were recently cloned and shown to encode a MYB-domain transcriptional activator and a cytosolic WD40 protein, respectively. Here, we report the isolation of an1 by transposon tagging. an1 encodes a new member of the basic helix-loop...

متن کامل

MYB and bHLH transcription factor transgenes increase anthocyanin pigmentation in petunia and lisianthus plants, and the petunia phenotypes are strongly enhanced under field conditions

Petunia line Mitchell [MP, Petunia axillaris × (P. axillaris × P. hybrida)] and Eustoma grandiflorum (lisianthus) plants were produced containing a transgene for over-expression of the R2R3-MYB transcription factor [TF; ROSEA1 (ROS1)] that up-regulates flavonoid biosynthesis in Antirrhinum majus. The petunia lines were also crossed with previously produced MP lines containing a Zea mays flavono...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genes & development

دوره 11 11  شماره 

صفحات  -

تاریخ انتشار 1997